★データの規模が小さい、データが集まりにくい、どのように機械学習を使えばよいのか?MIを上手に活用するための必須講座です!
【アーカイブ配信:2/28~3/6】の視聴を希望される方は、マテリアルズインフォマティクス【アーカイブ配信】からお申し込み下さい。
1.マテリアルズインフォマティクス(MI)に関する動向
1-1.MIへの期待
1-2.MIのはじまり
1-3.MIでできることとできないこと
1-4.MIの先端的な取り組み事例
1-5.MIは小規模データに適用できるのか・できないのか
1-6.MIと研究者の共存共栄
2.MIを活用したプロセス最適化事例:ナノシート収率の向上
2-1.MIを導入した系の紹介
2-2.データセットの準備
2-3.機械学習
2-4.予測モデル構築
2-5.MIで達成した成果
3.MIを活用した物質探索事例:高性能な新規リチウムイオン二次電池有機負極の探索
3-1.MIを導入した系の紹介
3-2.データセットの準備
3-3.機械学習
3-4.予測モデル構築
3-5.MIで達成した成果
4.小規模・実験データへのMIの適用
4-1.MIを身近なツールにする時代へ
4-2.明日から現場でできるデータセットの準備
4-3.明日から現場でできる機械学習
4-4.熟練の経験・勘・知見の活用法
5.おわりに(研究者の本音や質疑応答)