本ウェブページは【LIVE配信(12/9実施)】を録画したアーカイブ配信の申込ページです。
視聴期間中は何度でもご視聴いただけます。
1.AI画像認識システムの開発実例紹介
1-1 パン識別システム「BakeryScan」
1-2 不織布の外観検査システム
1-3 油圧部品の外観検査システム
1-4 金属チェーンの外観検査システム
1-5 レンガの外観検査システム
2.AI外観検査プロジェクトのはじめ方
2-1 AI外観検査の進め方・概念実証(PoC)
2-2 機械学習を意識した画像データの撮影
2-3 学習が難しい画像
2-4 学習しやすい画像のための前処理
3.学習データの量と質の課題
3-1 学習データの準備にかかる負荷(画像の収集、ラベルの付与)
3-2 学習データはどの程度必要か
3-3 外観検査における学習データ不均衡の問題
3-4 学習データの拡張,生成AIの活用
3-5 ラベル付き公開データセットと転移学習による対応
4.識別根拠の課題と品質保証への対応
4-1 Deep Learningは内部分析が困難
4-2 説明可能性・解釈性(XAI)に関する技術
4-3 Grad-CAMによる注目領域確認
4-4 品質保証への対応・段階的なAI外観検査の導入
5.AI外観検査システム導入の進め方まとめ
5-0 外部資金の獲得
5-1 不良品の定義確認と不良品サンプルの収集
5-2 撮影方法の検討
5-3 撮影装置の導入とデータ収集からPoC
5-4 初期判定モデルを作成し,プロトタイプとして導入
5-5 モデル改良と精度検証の繰り返し
5-6 本格運用開始後の維持管理
5-7 外観検査プロジェクトを成功させるために
【質疑応答】